Information broadcast on a tree and reconstruction

Marc Mézard, joint work with Andrea Montanari

Santa Fe, may 2007

The broadcast/reconstruction problem

Broadcast on a tree

The broadcast/reconstruction problem

Broadcast on a tree

Reconstruction

Motivation

- Communication network
- Propagation of genetic information
- Generalization of Markov chain to trees
- Statistical physics on a Cayley tree / Bethe lattice
- Optimization problems and error correcting codes: locally tree-like networks
- Spin glass phase

Communication channel

Message from alphabet, e.g. $x, y \in \{1, \dots, q\}$ Broadcast $x \to y$: probability $\pi(y|x)$.

Example "Ferromagnetic Potts channel":

$$\pi(y|x) = \begin{cases} 1 - \varepsilon & \text{if } y = x \\ \frac{\varepsilon}{q-1} < 1 - \varepsilon & \text{otherwise} \end{cases}$$

Communication channel

Message from alphabet, e.g. $x, y \in \{1, \dots, q\}$ Broadcast $x \to y$: probability $\pi(y|x)$.

Example "Ferromagnetic Potts channel":

$$\pi(y|x) = \begin{cases} 1 - \varepsilon & \text{if } y = x \\ \frac{\varepsilon}{q - 1} < 1 - \varepsilon & \text{otherwise} \end{cases} = \frac{1}{q - 1 + e^{\beta}} \exp(\beta \delta_{x, y})$$

Noise level in the channel: $T=1/\beta$ (related to ε by $e^{-\beta}=\frac{\varepsilon}{(q-1)(1-\varepsilon)}$)

 $\varepsilon \in [0, \frac{q-1}{q}]$; Larger $\varepsilon \to \mathsf{Higher}$ temperature.

Communication channel

Message from alphabet, e.g. $x,y \in \{1,\ldots,q\}$ Broadcast $x \to y$: probability $\pi(y|x)$.

Example "Ferromagnetic Potts channel":

$$\pi(y|x) = \begin{cases} 1 - \varepsilon & \text{if } y = x \\ \frac{\varepsilon}{q - 1} < 1 - \varepsilon & \text{otherwise} \end{cases} = \frac{1}{q - 1 + e^{\beta}} \exp(\beta \delta_{x, y})$$

Noise level in the channel: $T=1/\beta$ (related to ε by $e^{-\beta}=\frac{\varepsilon}{(q-1)(1-\varepsilon)}$)

 $\varepsilon \in [0, \frac{q-1}{q}]$; Larger $\varepsilon \to \mathsf{Higher}$ temperature.

('Antiferromagnetic' channel: $\varepsilon \in [\frac{q-1}{q}, 1]$. $\varepsilon = 1 \rightarrow \text{proper coloring}$)

Information on the boundary about the root

Broadcast: generates a boundary configuration B.

Reconstruction: Does B contain some information on the letter sent from the root, in the large ℓ limit?

Potts channel broadcasted from $x_0 = 1$:

$$\psi_{\ell} = \sum_{B} P_{broadcast}(B|x_0 = 1)P(x = 1|B) - \frac{1}{q}.$$

Reconstruction possible iff $\lim_{\ell\to\infty}\psi_{\ell}>0$.

Phase transition (Mossel):

Rec. possible for $\varepsilon < \varepsilon_r$ (i.e. $T < T_r$), impossible for $\varepsilon > \varepsilon_r$

Reconstruction versus "census reconstruction"

- Single variable on the boundary: correlation with root decays as $e^{-c\ell}$ when $\ell \to \infty$, as soon as $\beta < \infty$.
- Census reconstruction: information contained in the number of boundary sites with x=1?
- Reconstruction: information contained in the full boundary pattern?

A simple upper bound: ferromagnetic transition

Fully polarized boundary, x = 1 on all sites.

Reconstruction. Shell n: probability $\eta^{(n)}(x) = (1-a_n)\delta_{x,1} + \frac{a_n}{q-1}(1-\delta_{x,1})$.

Mapping: $a_{n-1} = F(a_n)$

Boundary condition $a_{\ell} = 0$.

Fixed point $a = \frac{q-1}{q}$.

Attractive iff $\varepsilon > \varepsilon_F = \frac{q}{q-1} \, \frac{k-1}{k}$

If $T > T_F$ no correlation of center with B \rightarrow reconstruction impossible

Shell n: k^n variables. Assume x_n k^n are in state x = 1.

$$x_{n+1} k^{n+1} = \sum_{i=1}^{x_n} \frac{k^{n+1}}{u_i} + \sum_{j=1}^{(1-x_n)} \frac{k^{n+1}}{z_j}$$

$$egin{aligned} oldsymbol{u_i} &= \left\{ egin{array}{ll} 1 & ext{probability} & 1-arepsilon \ 0 & ext{probability} & arepsilon \ z_j &= \left\{ egin{array}{ll} 1 & ext{probability} & rac{arepsilon}{q-1} \ 0 & ext{probability} & 1-rac{arepsilon}{q-1} \end{array}
ight. \end{aligned}$$

Shell n: k^n variables. Assume x_n k^n are in state x = 1.

$$x_{n+1} k^{n+1} = \sum_{i=1}^{x_n} \frac{k^{n+1}}{u_i} + \sum_{j=1}^{(1-x_n)} \frac{k^{n+1}}{z_j}$$

$$egin{aligned} oldsymbol{u_i} &= \left\{ egin{array}{ll} 1 & ext{probability} & 1-arepsilon \ 0 & ext{probability} & arepsilon \ \end{array}
ight. \ oldsymbol{z_j} &= \left\{ egin{array}{ll} 1 & ext{probability} & rac{arepsilon}{q-1} \ 0 & ext{probability} & 1-rac{arepsilon}{q-1} \end{array}
ight. \end{aligned}$$

Large $n: P(x_n) \sim \text{Gaussian}$

$$\mathbb{E}(x_n) \sim \frac{1}{q} + C \left| 1 - \varepsilon \frac{q}{q-1} \right|^n$$

Shell n: k^n variables. Assume x_n k^n are in state x = 1.

$$x_{n+1} k^{n+1} = \sum_{i=1}^{x_n} \frac{k^{n+1}}{u_i} + \sum_{j=1}^{(1-x_n)} \frac{k^{n+1}}{z_j}$$

$$egin{aligned} oldsymbol{u_i} &= \left\{ egin{array}{ll} 1 & ext{probability} & 1-arepsilon \ 0 & ext{probability} & arepsilon \ z_{oldsymbol{j}} &= \left\{ egin{array}{ll} 1 & ext{probability} & rac{arepsilon}{q-1} \ 0 & ext{probability} & 1-rac{arepsilon}{q-1} \end{array}
ight. \end{aligned}$$

Large $n: P(x_n) \sim \text{Gaussian}$

$$\mathbb{E}(\mathbf{x}_n) \sim \frac{1}{q} + C \left| 1 - \varepsilon \frac{q}{q-1} \right|^n$$

$$\sqrt{\mathbb{E}(\mathbf{x}_n^2) - [\mathbb{E}(\mathbf{x}_n)]^2} \sim C' k^{-n/2}$$

Shell n: k^n variables. Assume x_n k^n are in state x = 1.

$$x_{n+1} k^{n+1} = \sum_{i=1}^{x_n} \frac{k^{n+1}}{u_i} + \sum_{j=1}^{(1-x_n)} \frac{k^{n+1}}{z_j}$$

$$egin{aligned} m{u_i} &= \left\{ egin{array}{ll} 1 & ext{probability} & 1-arepsilon \ 0 & ext{probability} & arepsilon \ \end{array}
ight. \ m{z_j} &= \left\{ egin{array}{ll} 1 & ext{probability} & rac{arepsilon}{q-1} \ 0 & ext{probability} & 1-rac{arepsilon}{q-1} \end{array}
ight. \end{aligned}$$

Large $n: P(x_n) \sim \text{Gaussian}$

$$\mathbb{E}(\mathbf{x}_n) \sim \frac{1}{q} + C \left| 1 - \varepsilon \frac{q}{q-1} \right|^n$$

$$\sqrt{\mathbb{E}(\mathbf{x}_n^2) - [\mathbb{E}(\mathbf{x}_n)]^2} \sim C' k^{-n/2}$$

ightarrow Census reconstruction possible if $\varepsilon < \varepsilon_{KS} = \frac{q-1}{q} \frac{\sqrt{k}-1}{\sqrt{k}}$

Th (Mossel Peres): Threshold for census reconstruction is ε_{KS}

Some known results on the threshold T_r

$$T_{KS}$$
 given by: $k\left|\lambda_2(\pi)\right|^2=1$, T_F given by: $k\left|\lambda_2(\pi)\right|=1$

$$T_{KS} \le T_r \le T_F$$

Some known results on the threshold T_r

$$T_{KS}$$
 given by: $k \left| \lambda_2(\pi) \right|^2 = 1$, T_F given by: $k \left| \lambda_2(\pi) \right| = 1$

$$T_{KS} \le T_r \le T_F$$

For
$$q=2$$
: $T_r=T_{KS}$ (Bleher et al 95)

For q large enough: $T_r > T_{KS}$ (Mossel Peres 02)

New results (any tree, any channel)

- Reconstruction threshold T_r coincides with the dynamical (replica symmetry breaking) spin glass transition for an associated statistical physics problem
- Numerical procedure \rightarrow locate T_r with good precision
- Variational principle \rightarrow new rigorous bounds on T_r (proven for antiferromagnetic -or in general 'frustrated'- channels)

New results: examples

Ferromagnetic Potts

Numerically: $T_r = T_{KS}$ for q = 3, 4 and $k \in [2, 30]$

$$T_r > T_{KS}$$
 for $q \ge 5$, $k \ge 2$

New results: examples

Ferromagnetic Potts

Numerically: $T_r = T_{KS}$ for q = 3, 4 and $k \in [2, 30]$

$$T_r > T_{KS}$$
 for $q \ge 5$, $k \ge 2$

Antiferromagnetic Potts (coloring)

Numerically: Reconstruction in the noiseless limit (proper coloring) is possible only if $k \ge k_*(q)$, with $k_*(3) = 5$, $k_*(4) = 8$, $k_*(5) = 13,...$

New results: examples

Ferromagnetic Potts

Numerically: $T_r = T_{KS}$ for q = 3, 4 and $k \in [2, 30]$

$$T_r > T_{KS}$$
 for $q \ge 5$, $k \ge 2$

Antiferromagnetic Potts (coloring)

Numerically: Reconstruction in the noiseless limit (proper coloring) is possible only if $k \ge k_*(q)$, with $k_*(3) = 5$, $k_*(4) = 8$, $k_*(5) = 13,...$

$$T_r = T_{KS}$$
 for $q = 3$ and $k \in [5, 20]$

$$T_r > T_{KS}$$
 for $q \ge 4$, $k \ge k_*(q)$.

Rigorous: $k_*(4) \le 8$, $k_*(5) \le 13$. Discontinuous transition $(T_r > T_{KS})$ for q = 4, $k \in [9, 15]$, for q = 5, $k \in [13, 20]$, for q = 6, k = 20.

Reconstruction from a given boundary: recursion

Given a boundary:

$$\eta(y) = \frac{1}{z(\{\eta_i\})} \prod_{i=1}^k \left(\sum_{y_i=1}^q \pi(y_i|y) \, \eta_i(y_i) \right)$$

$$z(\lbrace \eta_i \rbrace) \equiv \sum_{y=1}^{q} \prod_{i=1}^{k} \left(\sum_{y_i} \pi(y_i|y) \, \eta_i(y_i) \right)$$

Mapping $\eta = \mathsf{F}(\eta_1, \dots, \eta_k)$

Reconstruction from a given boundary: recursion

Given a boundary:

$$\eta(y) = \frac{1}{z(\{\eta_i\})} \prod_{i=1}^k \left(\sum_{y_i=1}^q \pi(y_i|y) \, \eta_i(y_i) \right)$$

$$z(\lbrace \eta_i \rbrace) \equiv \sum_{y=1}^q \prod_{i=1}^k \left(\sum_{y_i} \pi(y_i|y) \, \eta_i(y_i) \right)$$

Mapping
$$\eta = \mathsf{F}(\eta_1, \dots, \eta_k)$$

Boundary B fixed by broadcast: $\eta_i(y_i) = \delta_{y_i, y_i^B}$ when i is a leaf.

Iterate from boundary to the center.

Statistics on the boundaries

For a given boundary B, on each site i of the tree, probability η_i^B , obtained by iteration from boundary to center.

NB: Link to Potts partition function $Z(y,B) = \sum_{\{y_i\}} \prod_{(ij)\in E} \pi(y_i,y_j)$:

Broadcast: $P_{broadcast}(B|y) = Z(y, B)$

Reconstruction: $\eta_i^B(y) = \frac{Z(y,B)}{\sum_{y'} Z(y',B)}$

Statistics on the boundaries

For a given boundary B, on each site i of the tree, probability η_i^B , obtained by iteration from boundary to center.

NB: Link to Potts partition function $Z(y,B) = \sum_{\{y_i\}} \prod_{(ij)\in E} \pi(y_i,y_j)$:

Broadcast: $P_{broadcast}(B|y) = Z(y, B)$

Reconstruction: $\eta_i^B(y) = \frac{Z(y,B)}{\sum_{y'} Z(y',B)}$

When B is generated randomly from broadcast (starting from a root fixed to x_0) \to probability distribution $Q_{x_0}(\eta)$ of η on the root.

$$Q_{x_0}(\eta) = \sum_{B} Z(x_0, B) \prod_{x} \delta\left(\eta(x) - \frac{Z(x, B)}{\sum_{x'} Z(x', B)}\right)$$

Functional recursion

$$Q_x^{(n+1)}(\eta) = \sum_{x_1...x_k} \prod_{i=1}^k \pi(x_i|x) \int \delta \left[\eta - \mathsf{F}(\eta_1, \dots, \eta_k) \right] \prod_{i=1}^k Q_{x_i}^{(n)}(\eta_i) d[\eta_i]$$

Symmetry property: $Q_x^{(n)}(\eta)=q\;\eta(x)\;\widehat{Q}^{(n)}(\eta)$ and $\widehat{Q}^{(n)}(\eta^\sigma)=\widehat{Q}^{(n)}(\eta)$

Symmetry property: $Q_x^{(n)}(\eta)=q\;\eta(x)\;\widehat{Q}^{(n)}(\eta)$ and $\widehat{Q}^{(n)}(\eta^\sigma)=\widehat{Q}^{(n)}(\eta)$

Recursion for \widehat{Q} :

$$\widehat{Q}^{(n+1)}(\eta) = q^{k-1} \int z(\{\eta_i\}) \delta[\eta - \mathsf{F}(\eta_1, \dots, \eta_k)] \prod_{i=1}^k \widehat{Q}^{(n)}(\eta_i) d[\eta_i]$$

Symmetry property: $Q_x^{(n)}(\eta)=q\;\eta(x)\;\widehat{Q}^{(n)}(\eta)$ and $\widehat{Q}^{(n)}(\eta^\sigma)=\widehat{Q}^{(n)}(\eta)$

Recursion for \widehat{Q} :

$$\widehat{Q}^{(n+1)}(\eta) = q^{k-1} \int z(\{\eta_i\}) \delta[\eta - \mathsf{F}(\eta_1, \dots, \eta_k)] \prod_{i=1}^k \widehat{Q}^{(n)}(\eta_i) d[\eta_i]$$

Fixed point:

$$\widehat{Q}^*(\eta) = q^{k-1} \int z(\{\eta_i\}) \delta[\eta - \mathsf{F}(\eta_1, \dots, \eta_k)] \prod_{i=1}^k \widehat{Q}^*(\eta_i) d[\eta_i]$$

Symmetry property: $Q_x^{(n)}(\eta)=q\;\eta(x)\;\widehat{Q}^{(n)}(\eta)$ and $\widehat{Q}^{(n)}(\eta^\sigma)=\widehat{Q}^{(n)}(\eta)$

Recursion for \widehat{Q} :

$$\widehat{Q}^{(n+1)}(\eta) = q^{k-1} \int z(\{\eta_i\}) \delta[\eta - \mathsf{F}(\eta_1, \dots, \eta_k)] \prod_{i=1}^k \widehat{Q}^{(n)}(\eta_i) d[\eta_i]$$

Fixed point:

$$\widehat{Q}^*(\eta) = q^{k-1} \int z(\{\eta_i\}) \delta[\eta - \mathsf{F}(\eta_1, \dots, \eta_k)] \prod_{i=1}^k \widehat{Q}^*(\eta_i) d[\eta_i]$$

Spin glass phase ("1-RSB"): exists iff there is a non-trivial symmetric fixed point.

Th: Reconstruction is possible iff there is a spin glass solution \widehat{Q}^*

Numerical approach

To obtain T_r : Solve the fixed point equation

$$\widehat{Q}^*(\eta) = q^{k-1} \int z(\{\eta_i\}) \delta[\eta - \mathsf{F}(\eta_1, \dots, \eta_k)] \prod_{i=1}^k \widehat{Q}^*(\eta_i) d[\eta_i]$$

by a 'population dynamics' (\sim Monte Carlo) method.

Results

Variational principle

"Complexity" of a distribution \widehat{Q} :

$$\Sigma(\widehat{Q}) = \frac{k+1}{2} \int \widehat{W}_{e}(\eta_{1}, \eta_{2}) d\eta_{1} \widehat{Q}(\eta_{1}) d\eta_{2} \widehat{Q}(\eta_{2})$$
$$- \int \widehat{W}_{v}(\eta_{1}, \dots, \eta_{k+1}) \prod_{i=1}^{k+1} d\eta_{i} \widehat{Q}(\eta_{i})$$

where \widehat{W}_{e} and \widehat{W}_{v} are known...

Theorem: A fixed point \widehat{Q}^* is a stationary point of $\Sigma(\widehat{Q})$.

Conjecture: If there exists a symmetric distribution \widehat{Q} such that $\Sigma(\widehat{Q}) > 0$, then the reconstruction problem is solvable.

Theorem: In the antiferromagnetic channel, if there exists a symmetric distribution \widehat{Q} such that $\Sigma(\widehat{Q})>0$, then the reconstruction problem is solvable.

Practical use of the variational principle

Compute Σ within some restricted subspace. Define e.g. \widehat{Q}_{μ} which attributes equal weight 1/q to the q points $\eta = \gamma^{(x)}$, $x \in \{1, \ldots, q\}$:

$$\gamma^{(x)}(y) = \left\{ \begin{array}{ll} 1 - \mu & \text{if } y = x, \\ \mu/(q-1) & \text{otherwise.} \end{array} \right. \text{ and } \Sigma(\mu) = \Sigma(\widehat{Q}_{\mu}).$$

Practical use of the variational principle

Compute Σ within some restricted subspace. Define e.g. \widehat{Q}_{μ} which attributes equal weight 1/q to the q points $\eta = \gamma^{(x)}$, $x \in \{1, \ldots, q\}$:

$$\gamma^{(x)}(y) = \left\{ \begin{array}{ll} 1 - \mu & \text{if } y = x, \\ \mu/(q-1) & \text{otherwise.} \end{array} \right. \text{ and } \Sigma(\mu) = \Sigma(\widehat{Q}_{\mu}).$$

SG

Practical use of the variational principle

Compute Σ within some restricted subspace. Define e.g. \widehat{Q}_{μ} which attributes equal weight 1/q to the q points $\eta = \gamma^{(x)}$, $x \in \{1, \ldots, q\}$:

$$\gamma^{(x)}(y) = \left\{ \begin{array}{ll} 1 - \mu & \text{if } y = x, \\ \mu/(q-1) & \text{otherwise.} \end{array} \right. \text{ and } \Sigma(\mu) = \Sigma(\widehat{Q}_{\mu}).$$

SG

Example: ferromagnetic Potts, k = 2, q = 7

Ferromagnetic Potts, $k=2,\ q=7$: plot of $-\Sigma$ vs μ :

$$k = 2, q = 7. \varepsilon = 0.250, 0.253, 0.256.$$

First order transition: $\varepsilon_{\rm KS}$ found by $\frac{d\Sigma}{d\mu}(\mu=(q-1)/q)=0$

$$\varepsilon_{\mathrm{KS}} = 0.2510513..; \ \varepsilon_{\mathrm{Var}} = .25369...; \ \varepsilon_r \simeq .25432$$

Results for the ferromagnetic Potts channel

 $\varepsilon_{\mathrm{r}}/\varepsilon_{\mathrm{KS}}$ as a function of q, for k=2

Squares: $\varepsilon_{\rm r}(k,q)$. Crosses: variational lower bound.

Broadcast: generates an equilibrium configuration of the Potts model with free boundary conditions.

Reconstruction: given the boundary B obtained from the broadcast, the conditional probability of the variable on the root, P(x|B), is also given by Boltzmann's measure for the Potts model. But B creates some frustration

Broadcast: generates an equilibrium configuration of the Potts model with free boundary conditions.

Reconstruction: given the boundary B obtained from the broadcast, the conditional probability of the variable on the root, P(x|B), is also given by Boltzmann's measure for the Potts model. But B creates some frustration

Spin glass on a tree: frustration only through boundary conditions.

Simple Ising spin glass model (Chayes, Chayes, Sethna, Thouless 1986): fix each spin on the boundary to ± 1 with probability 1/2. But no RSB, no real spin glass phase.

Other boundary condition: $\prod_{i \in \{ \text{ leaves} \}} \eta_i(x_i)$, but with correlated η_i :

$$\mathbb{P}(\{\eta_i\}) = \frac{1}{\Xi_L} Z_L(\{\eta_i\}) \prod_{i \in \mathsf{leaves}} \widetilde{Q}^{(0)}(\eta_i) ,$$

where $\widetilde{Q}^{(0)}(\eta)$ is the uniform distribution on the q 'corners' of the simplex $\eta(x)=\delta_{x,r}, \quad r\in\{1,\ldots,q\}$

Other boundary condition: $\prod_{i \in \{ \text{ leaves} \}} \eta_i(x_i)$, but with correlated η_i :

$$\mathbb{P}(\{\eta_i\}) = \frac{1}{\Xi_L} Z_L(\{\eta_i\}) \prod_{i \in \text{leaves}} \widetilde{Q}^{(0)}(\eta_i) ,$$

where $\widetilde{Q}^{(0)}(\eta)$ is the uniform distribution on the q 'corners' of the simplex $\eta(x)=\delta_{x,r}, \quad r\in\{1,\ldots,q\}$

→ functional recursion: identical to the one found in reconstruction

If $\widetilde{Q}^{(0)} = \widehat{Q}^*$, this model is statistically invariant by translation (provided rooted tree \to regular Cayley tree): The properties of a spin don't depend on its shell.

Spin glass theory: Bethe lattice

Traditionally, "Bethe lattice" = interior of a Cayley tree

Frustrated systems: frustration from the boundary \rightarrow bad definition.

Spin glass theory: Bethe lattice

Traditionally, "Bethe lattice" = interior of a Cayley tree

Frustrated systems: frustration from the boundary \rightarrow bad definition.

Better definition (M+Parisi 2001): use a random regular graph with fixed degree k+1 on each vertex.

Local structure (from a generic point, to any finite depth) = tree.

Frustration from long loops (size of $O(\log N)$).

This work: \rightarrow Typical boundary condition from outside the tree = the one obtained by broadcast !

Cavity method

Analysis of Potts model on a random regular graph: cavity method \rightarrow iterative functional equations.

 $\eta_{i\to j}(x_i)=$ marginal distribution of x_i when the edge i-j has been cut = function of the distributions $\eta_{l\to i}(x_l)$ where l are the neighbors of i different from j.

Cavity method

Analysis of Potts model on a random regular graph: cavity method \rightarrow iterative functional equations.

 $\eta_{i\to j}(x_i)=$ marginal distribution of x_i when the edge i-j has been cut = function of the distributions $\eta_{l\to i}(x_l)$ where l are the neighbors of i different from j.

'Liquid' or 'paramagnetic' solution, uniform: $\eta_{i \to j}(x_i) = \eta(x_i)$

Spin glass: many modulated solutions: $\eta_{i\to j}^\alpha(x_i)$. Functional $\widehat{Q}^*(\eta)=$ probability that $\eta_{i\to j}^\alpha=\eta$, when α is chosen randomly with its Boltzmann weight. $e^{N\Sigma}$ is the number of modulated solutions (BP fixed points)

Cavity method

Analysis of Potts model on a random regular graph: cavity method \rightarrow iterative functional equations.

 $\eta_{i\to j}(x_i)=$ marginal distribution of x_i when the edge i-j has been cut = function of the distributions $\eta_{l\to i}(x_l)$ where l are the neighbors of i different from j.

'Liquid' or 'paramagnetic' solution, uniform: $\eta_{i \to j}(x_i) = \eta(x_i)$

Spin glass: many modulated solutions: $\eta_{i \to j}^{\alpha}(x_i)$. Functional $\widehat{Q}^*(\eta)$ = probability that $\eta_{i \to j}^{\alpha} = \eta$, when α is chosen randomly with its Boltzmann weight. $e^{N\Sigma}$ is the number of modulated solutions (BP fixed points)

(NB: spin glass phase may be hidden by a ferromagnetic state, if it exists)

Comments

A very interesting problem!

Deep connexions to spin glasses

Using spin glass methods: \rightarrow new exact results (for frustrated case) and conjectures

Several open questions: prove variational conjecture also in unfrustrated cases \rightarrow best known bounds... Meaning of the complexity directly in the broadcast/reconstruction problem?

Comments

A very interesting problem!

Deep connexions to spin glasses

Using spin glass methods: \rightarrow new exact results (for frustrated case) and conjectures

Several open questions: prove variational conjecture also in unfrustrated cases \rightarrow best known bounds... Meaning of the complexity directly in the broadcast/reconstruction problem?

Ref: "Reconstruction on trees and spin glass transition", Marc Mézard and Andrea Montanari, J. Stat. Phys. 124 (2006) 1317-1350

Appendix A: Proof (sketch)

Proposition: The reconstruction problem is solvable iff there is a non-trivial fixed point $\widehat{Q}^*(\eta)$

If reconstruction solvable: Sequence of $\widehat{Q}^{(n)}$ converges weakly to $\widehat{Q}^*(\eta)$ which is non-trivial.

If \widehat{Q}^* exists, non-trivial. Construct the q probabilities $Q_x^*(\eta) = q \ \eta(x) \ \widehat{Q}^*(\eta)$. Use them to infer some information on the root. On a leaf i, broadcast has generated symbol x_i . Generate η_i from $Q_{x_i}^*$. Given the η 's in generation n: generate the new η 's in generation n-1 from the mapping $\eta = \mathsf{F}(\eta_1,\ldots,\eta_k)$, down to the root. For each site j, conditional to the broadcast having produced $X_j = x_j$, the η_j provided by the above procedure is distributed according to $Q_{x_i}^*$ (Thanks to James Martin)

Appendix B: Variational principle 1

"Complexity" of a distribution \widehat{Q} :

$$\Sigma(\widehat{Q}) = \frac{k+1}{2} \int \widehat{W}_{e}(\eta_{1}, \eta_{2}) d\eta_{1} \widehat{Q}(\eta_{1}) d\eta_{2} \widehat{Q}(\eta_{2})$$
$$\int \widehat{W}_{v}(\eta_{1}, \dots, \eta_{k+1}) \prod_{i=1}^{k+1} d\eta_{i} \widehat{Q}(\eta_{i})$$

where

$$\widehat{W}_{e} \equiv -\left[\frac{\sum_{x_{1}, x_{2}} \eta_{1}(x_{1}) \eta_{2}(x_{2}) \pi(x_{1}, x_{2})}{\sum_{x_{1}, x_{2}} \overline{\eta}(x_{1}) \overline{\eta}(x_{2}) \pi(x_{1}, x_{2})}\right] \log \left[\frac{\sum_{x_{1}, x_{2}} \eta(x_{1}) \eta(x_{2}) \pi(x_{1}, x_{2})}{\sum_{x_{1}, x_{2}} \overline{\eta}(x_{1}) \overline{\eta}(x_{2}) \pi(x_{1}, x_{2})}\right]$$

$$\widehat{W}_{\mathbf{v}} \equiv -\left[\frac{\sum_{x} \prod_{i} \sum_{x_{i}} \eta_{i}(x_{i}) \pi(x, x_{i})}{\sum_{x} \prod_{i} \sum_{x_{i}} \overline{\eta}(x_{i}) \pi(x, x_{i})}\right] \log \left[\frac{\sum_{x} \prod_{i} \sum_{x_{i}} \eta_{i}(x_{i}) \pi(x, x_{i})}{\sum_{x} \prod_{i} \sum_{x_{i}} \overline{\eta}(x_{i}) \pi(x, x_{i})}\right].$$

$$\overline{\eta}(x) = 1/q$$

Variational principle 2

Proposition: A fixed point \widehat{Q}^* is a stationary point of $\Sigma(Q)$.

(Precisely: given any symmetric distribution \widehat{Q} , define

$$\Sigma^*(t) \equiv \Sigma[(1-t)\widehat{Q}^* + t\widehat{Q}].$$
 Then $\frac{d\Sigma^*}{dt}\Big|_{t=0} = 0$).

Proposition In the antiferromagnetic Potts channel, if there exists a symmetric distribution \widehat{Q} such that $\Sigma(Q) < 0$, then the reconstruction problem is solvable.

Conjecture In any channel, if there exists a symmetric distribution \widehat{Q} such that $\Sigma(Q)<0$, then the reconstruction problem is solvable.

q	k	$arepsilon_{ m r}$	$arepsilon_{ ext{KS}}$		
5	2	0.2348(1)	0.2343146		
5	3	0.33881(5)	0.3381198		
5	4	0.4008(1)	0.4		
5	7	0.4986(1)	0.4976284		
5	15	0.5955(1)	0.5934409		
7	2	0.25432(5)	0.2510513		
7	4	0.43325(5)	0.4285714		
10	2	0.2716(2)	0.2636039		
15	2	0.2881(1)	0.2733670		

Table 1: Threshold for the ferromagnetic Potts channel

q	k	$arepsilon_{ m r}$	$arepsilon_{ ext{KS}}$	$arepsilon_{ ext{var}}$	$arepsilon_{ m alg}$	$arepsilon_{ ext{MP}}$	I_*	
5	2	0.2348(1)	0.2343146	0.23491		0.30264	0.052(5)	0
5	3	0.33881(5)	0.3381198	0.33887	0.19047	0.41712	0.06(2)	
5	$\mid 4 \mid$	0.4008(1)	0.4	0.40081	0.29046	0.48	0.06(1)	
5	7	0.4986(1)	0.4976284	0.49847	0.41114	0.57143	0.07(1)	
5	15	0.5955(1)	0.5934409	0.59422	0.53965	0.65238	0.14(1)	
7	2	0.25432(5)	0.2510513	0.25369		0.34577	0.14(1)	
7	$\mid 4 \mid$	0.43325(5)	0.4285714	0.43250	0.30769	0.53909	0.195(5)	
10	2	0.2716(2)	0.2636039	0.26977		0.38325	0.23(2)	
15	2	0.2881(1)	0.2733670	0.28472		0.41652	0.37(3)	

Table 2: Thresholds (numerical results and bounds) for the ferromagnetic Potts channel. The reconstruction threshold $\varepsilon_{\rm r}$ satisfies the rigorous bounds $\varepsilon_{\rm r} \geq \varepsilon_{\rm KS}$, $\varepsilon_{\rm r} \geq \varepsilon_{\rm alg}$, and $\varepsilon_{\rm r} \leq \varepsilon_{\rm MP}^-$. The conjectured variational principle would imply $\varepsilon_{\rm r} \geq \varepsilon_{\rm var}$.

q	k	$arepsilon_{ m r}$	$arepsilon_{ ext{KS}}$	$arepsilon_{ ext{var}}$	$arepsilon_{ m alg}$	$arepsilon_{ ext{MP}}^{-}$	I_*	
$\boxed{4}$	8	0.99953(4)				0.91552	1.56(4)	0
$\mid 4 \mid$	9	0.9908(4)	1	0.99298		0.90717	1.31(2)	0
$\mid 4 \mid$	10	0.9820(8)	0.9871708	0.98304		0.9	1.2(2)	0
$\mid 4 \mid$	11	0.9725(3)	0.9761335	0.97363	0.99736	0.89376	1.07(5)	0
$\mid 4 \mid$	12	0.9643(3)	0.9665063	0.96498	0.98946	0.88826	0.26(3)	
$\mid 4 \mid$	15	0.9431(3)	0.9436492	0.94338	0.96903	0.875	0.5(1)	0
4	18	0.9267(2)	0.9267766	0.92686	0.95264	0.86502	0.3(1)	0
5	13	0.99741(5)		0.99982		0.92308	1.76(4)	0
5	14	0.9932(1)		0.99555		0.91916	1.7(1)	0
5	15	0.9888(1)		0.99092		0.91561	1.48(5)	0
5	20	0.9685(3)	0.9788854	0.96991	0.98581	0.90177	1.1(5)	0
6	17	0.999924(5)				0.93482	2.20(4)	0.6
6	20	0.9932(3)		0.99546		0.92792	1.87(6)	$\mid 0.!$

Table 3: Antiferromagnetic, rigorous bounds: $\varepsilon_{\rm r} \leq \varepsilon_{\rm KS}$ (KS), $\varepsilon_{\rm r} \leq \varepsilon_{\rm alg}$ (Mossel), $\varepsilon_{\rm r} \leq \varepsilon_{\rm var}$ (M+M), $\varepsilon_{\rm r} \geq \varepsilon_{\rm MP}^-$ (Mossel Peres).